#import "./template/template.typ": exercise, example, notes, theorem, definition, proof, lemma #show: notes.with( class: "EE1M1", lecture: "Integrations by parts and partial decomposition fractions", number: 6, date: "2025-11-21", ) == Integrations by parts #theorem(title: "unbounded integral")[ Suppose $f$ and $g$ are differentiable functions. Then $ integral f(x) g^(')(x) = f(x)g(x) - integral f^(')(x) g(x) d x $ Using $g^(')(x) d x = d v$ and $f^(')(x) d x = d u$ we can also write: $ integral u d v = u v - integral v d u $ ] #theorem(title: "bounded integral")[ Suppose $f$ and $g$ are differentiable functions. Then $ integral_a^b f(x) g^(')(x) d x = [f(x)g(x)]_a^b - integral_a^b f^(')(x)g(x) d x $ ] #example[ Can the integral be solved using both the substitution role and integration by parts? $ integral 1/x ln(x) d x $ #emph("Substitution rule") #emph("Integration by parts") ] #example[ $ integral e^(sin(x)) sin(x) cos(x) d x \ u = sin(x) \ d u = cos(x) d x \ integral e^u u d u \ k^(') (x) = e^u \ h(x) = u \ integral e^u u d u = k(u)h(u) - integral k(u)h^(')(u) d u \ integral e^u u d u = e^u u - e^u = e^(sin(x)) sin(x) - e^(sin(x)) + C $ ] #example[ $ integral e^(2 x) cos(x) d x = \ $ ] #example[ $ integral arctan(x) d x = \ g^(')(x) = 1, g(x) = x \ $ ] #exercise[ $ integral ln(3x) d x $ ] #exercise[ $ integral_0^(-pi) e^(-x) sin(x) d x $ ] #exercise[ $ integral ln(x) / x sin(ln(x)) d x $ ] == Partial decomposition fractions #theorem(title: "partial decomposition fractions")[ Let $f(x) = P(x)/Q(x)$, with $P(x)$ and $Q(x)$ polynomials. The *degree* of a polynomial is its highest power. Suppose $"degree"(P(x)) < "degree"(Q(x))$. *Distinct linear factors* If $Q(x) = (x-a)(x-b)$ with $a eq.not b$ then $ P(x) / Q(x) = A / (x-a) + B / (x-b) $ *Irreducible quadratic factor* If $Q(x) = (x-a)(x^2 + b x + c)$ with $b^2 - 4c < 0$. Then: $ P(x)/Q(x) = A/(x-a) + (B x + C)/(x^2 + b x + c) $ *Repeated linear factor* If $Q(x) = (x-a)^2 (x-b)$ with $a eq.not b$ then $ P(x)/Q(x) = A/ (x-a) + B /(x-a)^2 + C/(x-b) $ ] $ (x-a)(x-a)^2(x-b) = (x-a)^3(x-b) \ (A(x-a)^2 + B(x-a))(x-b) + C(x-a)^3 $ $ A / (x-1) + B / (x+1) = A (x+1) + B(x-1) = 1 \ B = -1/2 \ A = 1/2 $ $ 1 / ((x-1)(x^2 - 2x + 3)) = $