#import "./template/template.typ": exercise,notes, theorem, definition, proof, lemma #show: notes.with( class: "EE1M1", lecture: "test", number: 2, date: "2025-11-25", ) #definition(title: "limit")[ Let $f$ be a function defined on some open interval that contains the number $a$, except possibly at $a$ itself. Then we say that the *limit of $f(x)$ as $x$ approaches $L$*, and we write $ limits("lim")_(x->a) f(x) = L $ if for every number $epsilon > 0$ there is a number $delta > 0$ such that $ "if" quad 0 < | x-a| < delta quad "then" quad |f(x) - L| < epsilon $ ] #definition(title: "left-sided limit")[ $ lim_(x->a^(-)) f(x) = L $ if for every number $epsilon > 0$ there is a number $delta > 0$ such that $ "if" quad a-delta < x < a quad "then" quad |f(x) - L| < epsilon $ ] #definition(title: "right-sided limit")[ $ lim_(x->a^(+)) f(x) = L $ if for every number $epsilon > 0$ there is a number $delta > 0$ such that $ "if" quad a < x < a+delta quad "then" quad |f(x) - L| < epsilon $ ] #definition(title: "infinite limits")[ Let $f$ be a function defined on some open interval that contains the number $a$, except possibly at $a$ itself. Then $ limits("lim")_(x->a) f(x) = infinity $ means that for every positive number $M$ there is a positive number $delta$ such that $ "if" quad 0 < |x-a| < delta quad "then" quad f(x) > M $ ] #definition(title: "vertical asymptotes")[ The vertical line $x = a$ is called a *vertical asymptote* of the curve $y=f(x)$ if at least one of the following statements is true: #table( columns: (33%, 33%, 33%), stroke: none, [$ lim_(x->a) f(x) = infinity $], [$ lim_(x->a^(-)) f(x) = infinity $], [$ lim_(x->a^(+)) f(x) = infinity $], [$ lim_(x->a) f(x) = -infinity $], [$ lim_(x->a^(-)) f(x) = -infinity $], [$ lim_(x->a^(+)) f(x) = -infinity $] ) ] #theorem(title: "Constant Laws")[ Suppose that $c$ is constant: + $limits("lim")_(x->a) c = c$ + $limits("lim")_(x->a) x = a$ ] #theorem(title: "Limit Laws")[ Suppose that $c$ is a constant and the limits: $ limits("lim")_(x->a) f(x) quad "and" quad limits("lim")_(x->a) g(x) $ exist then: #block([ + *sum law*: #v(0pt) $limits("lim")_(x->a) [f(x) + g(x)] = limits("lim")_(x->a) f(x) + limits("lim")_(x->a) g(x)$ #v(5pt) + *difference law*: #v(0pt) $limits("lim")_(x->a) [f(x) - g(x)] = limits("lim")_(x->a) f(x) - limits("lim")_(x->a) g(x)$ #v(5pt) + *constant mult. law*: #v(0pt) $limits("lim")_(x->a) [c f(x)] = c limits("lim")_(x->a) f(x)$ #v(5pt) + *product law*: #v(0pt) $limits("lim")_(x->a) [f(x)g(x)] = limits("lim")_(x->a) f(x) dot limits("lim")_(x->a) g(x)$ #v(5pt) + *quotient law*: #v(0pt) $limits("lim")_(x->a) f(x)/g(x) = (limits("lim")_(x->a) f(x))/(limits("lim")_(x->a) g(x)) quad "if" quad limits("lim")_(x->a) g(x) eq.not 0$ #v(5pt) + *power law*: #v(0pt) $limits("lim")_(x->a) [f(x)]^n = [limits("lim")_(x->a)]^n$ where $n$ is a positive integer#v(5pt) + *root law*: #v(0pt) $limits("lim")_(x->a) root(n, f(x)) = root(n, limits("lim")_(x->a) f(x))$ where $n$ is a positive integer #v(0pt) if $n$ is even, we assume that $limits("lim")_(x->a) f(x) > 0$ ]) ] #proof(title: "limit laws")[\ *Sum Law* Let $limits("lim")_(x->a) f(x) = L$ and $limits("lim")_(x->a) g(x) = M$. then $limits("lim")_(x->a) [f(x) + g(x)] = L + M$. Let $epsilon > 0$. We must find $delta > 0$ such that $ "if" quad 0 < | x - a| < delta quad "then" quad |f(x) + g(x) - (L+M)| < epsilon $ Using the triangle equality $ |(f(x)-L) + (g(x) - M)| <= |f(x) - L| + |g(x) - M| $ If $|f(x) -L| < epsilon/2$ and $|g(x) - M| < epsilon/2$ then $|f(x) -L + g(x) - M| < epsilon$ by the inequality above. Since $epsilon/2 > 0$ and $limits("lim")_(x->a) f(x) = L$, there exists a number $delta_1 > 0$ such that $ "if" quad 0 < | x-a| < delta_1 quad "then" quad |f(x) -L| < epsilon/2 $ Similarly, with $limits("lim")_(x->a) g(x) = M$, there exists a number $delta_2 > 0$ such that $ "if" quad 0 < | x-a| < delta_2 quad "then" quad |f(x) - M| < epsilon/2 $ Let $delta = min{delta_1, delta_2}$. If $0 < | x - a | < delta$ then $0 < |x-a| < delta_1$ and $0 < | x-a| < delta_2$. Therefore $ |f(x) + g(x) - (L+M)| <= |f(x) -L| + |g(x) - M| < epsilon/2 + epsilon/2 = epsilon $ ] #definition(title: "Direct substitution property")[ If $f$ is a polynomial or a rational function and $a$ is in the domain of $f$, then $ limits("lim")_(x->a) f(x) = f(a) $ Functions with this property are called #emph([continuous]) at $a$. ] #theorem(title: "Inequality of limits")[ If $f(x) <= g(x)$ when $x$ is near $a$ (except possibly at $a$) and the limits of $f$ and $g$ both exists as $x$ approaches $a$, then $ limits("lim")_(x->a) f(x) <= limits("lim")_(x->a) g(x) $ ] #theorem(title: "Squeeze theorem")[ If $f(x) <= g(x) <= h(x)$ when $x$ is near $a$ (except possibly at $a$) and $ limits("lim")_(x->a) f(x) = limits("lim")_(x->a) h(x) = L $ then $ limits("lim")_(x->a) g(x) = L $ ] #definition(title: "Limit at infinity")[ Let $f$ be a function defined on some interval $(a,infinity)$. Then $ limits("lim")_(x->infinity) f(x) = L $ menas that for every $epsilon > 0$ there is a corresponding number $N$ such that $ "if" quad x > N quad "then" quad |f(x) - L| < epsilon $ ] #exercise(title: "Exercise 9, section 2.2")[ State the following: + $limits("lim")_(x->-7) f(x) = -infinity$ + $limits("lim")_(x->-3) f(x) = infinity$ + $limits("lim")_(x->0) f(x) = infinity$ + $limits("lim")_(x->6^(-)) f(x) = -infinity $ + $limits("lim")_(x->6^(+)) f(x) = infinity $ ] #exercise(title: "Exercise 29, section 2.2")[ Determine the infinite limit: $ limits("lim")_(x->5^(+)) (x+1)/(x-5) = infinity $ ] #exercise(title: "Exercise 39, section 2.2")[ Determine the infinite limit: $ limits("lim")_(x->0) ln(x^2) - x^(-2) = -infinity $ ] #exercise(title: "Exercise 23, section 2.3")[ Evaluate the limit, if it exists $ limits("lim")_(h->0) (sqrt(9+h)-3)/h $ Using the square root trick: $ limits("lim")_(h->0) (sqrt(9+h)-3)/h dot (sqrt(9+h)+3)/(sqrt(9+h)+3) \ limits("lim")_(h->0) (9+h - 9)/(h(sqrt(9+h)+3)) = 1/(sqrt(9+h)+3)= 1/6 $ ] #exercise(title: "Exercise 31, section 2.3")[ Evaluate the limit, if it exists $ limits("lim")_(t->0) 1/(t sqrt(1+t)) - 1/t $ First combinding the terms: $ limits("lim")_(t->0) (t- t sqrt(1+t))/(t^2 sqrt(1+t)) = (1-sqrt(1+t))/(t sqrt(1+t)) $ and then using the square root trick: $ limits("lim")_(t->0) (1-sqrt(1+t))/(t sqrt(1+t)) dot (1+sqrt(1+t))/(1+sqrt(1+t)) = \ limits("lim")_(t->0) (1-(1+t))/(t sqrt(1+t)(1+sqrt(1+t))) = -1/(sqrt(1+t)(1+sqrt(1+t))) = -1/2 $ ] #exercise(title: "Exercise 41, section 2.3")[ Prove that $limits("lim")_(x->0) x^4 cos(2/x) = 0$. Using Squeeze theorem: $ -1 <= cos(2/x) <= 1 \ -x^4 <= x^4cos(2/x) <= x^4 \ limits("lim")_(x->0) -x^4 = limits("lim")_(x->0) x^4 = 0 $ ] #exercise(title: "Exercise 47, section 2.3")[ Find the limit, if it exsists. If the limit does not exist, explain why. $ limits("lim")_(x->0^(-)) 1/x - 1/(|x|) = 1/x - (-1/x) = 2/x $ This limit tends to infinity and does not exist. ] #exercise(title: "Exercise 51, section 2.3")[ + $limits("lim")_(x->2^(+)) g(x) = ((x-2)(x+3))/(x-2) = x+3 = 5$ + $limits("lim")_(x->2^(-)) g(x) = ((x-2)(x+3))/-(x-2) = -(x+3) = -5$ + The limit does not exist, since the one-sided limits diverge. ] #exercise(title: "Exercise 61, section 2.3")[ $ limits("lim")_(x->0) (f(x) - 8)/(x-1) = 10 \ limits("lim")_(x->0) f(x) - 8 = limits("lim")_(x->0) (f(x)-8)/(x-1) dot (x-1) = 10 dot 0 = 0 \ limits("lim")_(x->0) f(x) - limits("lim")_(x->0) 8 = 0 \ limits("lim")_(x->0) f(x) = 8 $ ]